Python es un lenguaje de programación creado por Guido van Rossum en 1989, quien le colocó dicho nombre inspirado en la serie británica Monty Python 's Flying Circus. Desde entonces, este lenguaje ha causado furor debido a una serie de ventajas que aporta como ningún otro. Hoy en día, el campo de la inteligencia artificial (IA) también goza de los beneficios ofrecidos por Python, y de esto veremos ejemplos a continuación.
Se estima que, para el año 2025, las ganancias globales que generen los software de inteligencia artificial superen los 118 mil millones de dólares. En cuanto a España, el 66% de los expertos y empresarios considera que la inteligencia artificial, junto a la robótica, serán las tecnologías con mayor crecimiento en la nación. De hecho, actualmente, España es uno de los 10 países con mayor cantidad de patentes de IA.
Así, el machine learning (ML) y su subcampo, el deep learning (DL), se están convirtiendo en áreas de investigación y de desarrollo cada vez más relevantes para las empresas y la sociedad. Por lo tanto, los programadores deben adquirir habilidades y capacidades que les permitan desarrollar soluciones basadas en ML y DL de manera fácil, práctica y cómoda.
Aquí es donde entran juego las ventajas que pueden obtener los programadores al utilizar Python.
Python es open source (de “código abierto”), lo que significa que es completamente transparente de cara a los usuarios y que cualquier experto en el mundo puede aportar mejoras a dicho lenguaje.
Estas mejoras por parte de otros programadores se comparten dentro de enormes comunidades online formadas por adeptos de Python. Así, cada integrante puede beneficiarse de los aportes que realizan sus colegas o, en cambio, puede compartir con ellos su propio aporte personal.
Incluso, si cualquier programador tiene problemas con el desarrollo de un proyecto en Python, puede pedir ayuda en estas comunidades y recibir feedback inmediato desde todas partes del mundo
Gracias a estas comunidades y a la cualidad de open source, en internet se consiguen infinidad de recursos gratuitos para aprender desde 0 o para resolver algún problema complejo en Python. Un ejemplo de esto son los tutoriales y las herramientas disponibles en w3schools.
Con más de 30 años en el campo, Python es el lenguaje más popular entre los científicos de la computación y los desarrolladores informáticos. Lejos de ser superado por otros lenguajes, más bien su nivel de popularidad y de adopción continúa creciendo de manera indetenible según StackOverflow, uno de los portales sobre programación más importantes y consultados del mundo.
De estas comunidades, salen diferentes librerías, que incluyen un conjunto de funciones, módulos, paquetes, frameworks y aplicaciones, que son las fuentes de recursos con varias funcionalidades aplicadas en soluciones de inteligencia artificial.
2. ¡Muchas librerías disponibles! De todo y para todos
La librería estándar de Python ofrece una gran variedad de módulos que realizan distintos tipos de funciones. Entre ellas encontramos: el módulo OS, para interactuar con el sistema operativo, el módulo math para realizar funciones trigonométricas, logarítmicas o estadísticas, o el módulo datetime para manejar fechas y tiempos, entre otros.
Según la naturaleza de cada proyecto, el desarrollo en Python puede resultar muy rápido gracias a esta existencia de múltiples librerías disponibles de manera online y gratuita.
Sin embargo, existen librerías desarrolladas en Python que no usan paquetes ni módulos que no forman parte de la biblioteca estándar. De hecho, Python está diseñado para facilitar esa interoperabilidad. Estas librerías de terceros incluyen paquetes y módulos diseñados para ayudar a resolver problemas en áreas específicas. Estas librerías se generan cooperativamente en las comunidades anteriormente mencionadas, y muchas están especializadas en machine learning y deep learning.
Utilizar este tipo de recursos les permite a los programadores ahorrar tiempo en sus desarrollos, al no tener que empezarlos desde 0, o incluso hasta pueden crear muy fácilmente un primer prototipo 100% operativo.
Esto implica no solo una ventaja para el profesional, sino también para la empresa que desea una solución rápida de IA basada en Python.
Las librerías de Python que los programadores utilizan para importar módulos y utilizar en su código de aprendizaje automático son:
Es la librería por excelencia para computación científica en Python. Está compuesta por muchas funciones de cálculo matricial de N dimensiones, transformada de Fourier, múltiples funciones de álgebra lineal y varias funciones de aleatoriedad.
Es la librería de cálculo más popular debido a su facilidad de uso y la rapidez de sus cálculos, al estar escrita, parte de ella, directamente en lenguaje C.
NumPy, además de ser una herramienta científica, también puede ser utilizada como una herramienta estadística. Muchas otras librerías utilizan Numpy como base para sus cálculos matemáticos.
Esta librería sirve de base para otras muchas librerías científicas (por ejemplo, Pandas) que se basan en NumPy para sus cálculos matemáticos.
Pandas es una librería de Python de código abierto que se especializa en el procesamiento de datos de forma rápida y flexible mediante estructuras de datos diseñadas para trabajar con datos “relacionales” o “etiquetados” de manera fácil e intuitiva. Se basa en las estructuras de datos o arrays de la librería NumPy. Pandas es el bloque de construcción de alto nivel para realizar análisis de datos del mundo real en Python.
Además, esta librería soporta el tratamiento de missing values, la mutación de las estructuras de datos, agregaciones, transformación y rotación de datos, combinación e unión de conjuntos, etiquetado de ejes e incluye herramientas de E/S para la carga datos desde archivos planos (CSV y delimitados), Excel, bases de datos y para guardar o cargar datos desde el formato ultrarrápido HDF5.
Es una biblioteca para aprendizaje automático de software libre para el lenguaje de programación Python. Cuenta con algoritmos de clasificación, regresión, clustering y reducción de dimensionalidad. Además, presenta la compatibilidad con otras librerías de Python como NumPy, SciPy y matplotlib.
La gran variedad de algoritmos y utilidades de Scikit-learn la convierten en la herramienta básica para empezar a programar y estructurar los sistemas de análisis de datos y modelado estadístico. Los algoritmos de Scikit-Learn se combinan y depuran con otras estructuras de datos y aplicaciones externas como Pandas o PyBrain.
TensorFlow es una librería de código abierto desarrollada por el equipo de Google Brain para acelerar el aprendizaje automático con redes neuronales profundas. Incluye el procesamiento previo de los datos, la construcción del modelo y el entrenamiento y estimación del mismo.
Recibe su nombre porque toma como entrada una matriz multidimensional, también conocida como tensores, los cuales construyen una especie de diagrama de flujo de operaciones (llamado Graph) donde tiene un extremo como entrada y luego fluye a través de este sistema de múltiples operaciones hasta el otro extremo como salida. El tensor entra y fluye a través de una lista de operaciones, y luego sale del otro lado.
Es una librería de aprendizaje automático, aprendizaje profundo y redes neuronales basada en Python de código abierto. Está diseñada para construir modelos y aumentar la producción, y se especializa en cálculos de tensor, diferenciación automática y aceleración de GPU.
PyTorch utiliza clases, estructuras y bucles condicionales que son más reconocibles, por lo tanto, más fáciles de entender. Además, emplea la computación dinámica, obteniendo una mayor flexibilidad en la creación de redes complicadas.
Esta es una de las librerías de Python más utilizada en el ámbito de la ciencia de datos para representaciones gráficas. Proporciona funciones para crear plots o gráficas enriquecidas que se adaptan a todo tipo de datasets y permiten una personalización muy profunda de las propiedades de las gráficas. Debido a que matplotlib fue la librería inicial de visualización de datos en Python, muchas otras librerías están construidas sobre ella o están diseñadas para trabajar en conjunto con ella. Esto significa que se puede pasar cualquier tipo de datos de tipo matriz Python, bien Pandas dataframes o bien matrices NumPy sin tener que convertirlos a otro formato.
Si bien Matplotlib resulta una buena opción cuando se trata de obtener un sentido de los datos, no es particularmente útil para crear gráficos de calidad de publicación.
La curva de aprendizaje de Python es muy corta, lo cual significa que, si un profesional no sabe utilizar este lenguaje pero lo necesita para desarrollar un proyecto de IA rápidamente, puede aprenderlo en corto tiempo.
Esto es especialmente útil para los científicos de datos que no saben utilizar Python pero que deben gestionar gran cantidad de datos de manera ágil para algún proyecto de machine learning o de deep learning.
Son múltiples las características que demuestran la facilidad de Python, y ejemplos de esto es la gran semejanza que el lenguaje tiene con el idioma inglés y la sintaxis muy simple que posee, la cual facilita el trabajo con sistemas complejos, asegurando relaciones claras entre los elementos del sistema.
En Python todo es claro y preciso. No hay márgenes de confusión, de errores ni de paradigmas conflictivos.
En cuanto a machine learning se trata, los desarrolladores pueden aprovechar una serie de cualidades altamente flexibles de Python, como por ejemplo:
Además, Python puede ejecutarse en cualquier plataforma (Windows, MacOS, Linux, Unix, entre otras) para el desarrollo de proyectos de machine learning.
En el caso de que el código se deba migrar de una plataforma a otra, solo es necesario realizar cambios a muy pequeña escala. Incluso, se pueden utilizar paquetes como PyInstaller para preparar la ejecución del código en distintas plataformas.
Una de las mayores ventajas para los data scientist que trabajan con gran cantidad de datos es la variedad y disponibilidad de herramientas para la visualización y representación con base en Python.
Algunos ejemplos de los beneficios que esto les aporta a los científicos de datos son:
Todo ello, en conjunto, permite obtener un nivel de entendimiento sin precedentes sobre cualquier programa de inteligencia artificial en desarrollo.
Python es, sin duda, el camino más beneficioso para desarrollar aplicaciones empresariales de inteligencia artificial. En este sentido, desde Enzyme Advising Group ayudamos a las empresas con soluciones 100% personalizadas y desarrolladas mediante Python. Ejemplos de las tecnologías que utilizamos para potenciar los negocios son la inteligencia artificial, el machine learning, el business intelligence y la automatización robótica.
¡Contáctanos para trabajar juntos en tu proyecto de inteligencia artificial!
Creamos nuevos productos y servicios superiores hibridando la tecnología con los modelos de negocio
¿En qué ámbitos se concentran tus retos actualmente?
Algunos detalles para conocerte mejor
Ya casi terminamos 😊 Para poder contactar contigo y conocer mejor tus necesidades:
¡Ya has completado el formulario!
Revisaremos tu solicitud y nos pondremos en contacto contigo lo antes posible.